

Google Interview Prep Guide

Front End/Mobile Software Engineer
What’s a Front End/Mobile Software Engineer?

Front End/Mobile Software Engineers at Google develop the next-generation technologies that change how
millions of users connect, explore and interact with information and one another. ​As a Front End SWE, you’ll
specialize in building responsive and elegant web applications that scale to millions of users in dozens of
languages. You’ll help Google build next-generation web applications like Gmail, Google Search, Google
Maps, Google+ and more.

Why Google? Impact.

Google is and always will be an engineering company. We hire people with a broad set of technical skills
who are ready to tackle some of technology's greatest challenges and make an impact on millions, if not
billions, of users. At Google, engineers not only revolutionize search, they routinely work on massive
scalability and storage solutions, large-scale applications and develop entirely new platforms around the
world. From AdWords to Chrome, Android to YouTube, Cloud to Maps, Google engineers are changing the
world one technological achievement after another.

General Interview Tips

Explain: ​We want to understand how you think, so explain your thought process and decision making
throughout the interview. Remember we’re not only evaluating your technical ability, but also how you
approach problems and try to solve them. Explicitly state and check assumptions with your interviewer to
ensure they are reasonable.

Clarify: ​Many of the questions will be deliberately open-ended to provide insight into what categories and
information you value within the technological puzzle. We’re looking to see how you engage with the
problem and your primary method for solving it. Be sure to talk through your thought process and feel free to
ask specific questions if you need clarification.

Improve: ​Think about ways to improve the solution you present.It’s worthwhile to think out loud about your
initial thoughts to a question. In many cases, your first answer may need some refining and further
explanation. ​If necessary, start with the brute force solution and improve on it — just let the interviewer know
that's what you're doing and why.

Practice: ​You won’t have access to an IDE or compiler during the interview so practice writing code on paper
or a whiteboard. Be sure to test your code and ensure it’s easily readable without bugs. Don’t stress about
small syntactical errors like which substring to use for a given method (e.g. start, end or start, length) — just
pick one and let your interviewer know.

The Technical Phone Interviews

Your phone interview will cover data structures and algorithms. Be prepared to write around 20-30 lines of
code in your strongest language. Approach all scripting as a coding exercise — this should be clean, rich,
robust code.

1. You will be asked an open ended question. Ask clarifying questions, devise requirements.

2. You will be asked to explain it in an algorithm.

3. Convert it to a workable code.(Hint: Don't worry about getting it perfect because time is limited.
Write what comes but then refine it later. Also make sure you consider corner cases and edge
cases, production ready.)

4. Optimize the code, follow it with test cases and find any bugs.

google.com/​careers

The Coding & Algorithm Interviews

Coding: You should know at least one programming language really well, preferably C++, Java, Python, Go,
or C. You will be expected to know APIs, Object Orientated Design and Programming, how to test your code,
as well as come up with corner cases and edge cases for code. Note that we focus on conceptual
understanding rather than memorization.

Algorithms: ​Approach the problem with both bottom-up and top-down algorithms. You will be expected to
know the complexity of an algorithm and how you can improve/change it. Algorithms that are used to solve
Google problems include sorting (plus searching and binary search), divide-and-conquer, dynamic
programming/memoization, greediness, recursion or algorithms linked to a specific data structure. Know
Big-O notations (e.g. run time) and be ready to discuss complex algorithms like Dijkstra and A*. We
recommend discussing or outlining the algorithm you have in mind before writing code.

Sorting: ​Be familiar with common sorting functions and on what kind of input data they’re efficient on or
not. Think about efficiency means in terms of runtime and space used. For example, in exceptional cases
insertion-sort or radix-sort are much better than the generic QuickSort/MergeSort/HeapSort answers.

Data Structures: ​You should study up on as many data structures as possible. Data structures most
frequently used are arrays, linked lists, stacks, queues, hash-sets, hash-maps, hash-tables, dictionary, trees
and binary trees, heaps and graphs. You should know the data structure inside out, and what algorithms
tend to go along with each data structure.

Mathematics: ​Some interviewers ask basic discrete math questions. This is more prevalent at Google than
at other companies because counting problems, probability problems and other Discrete Math 101
situations surround us. Spend some time before the interview refreshing your memory on (or teaching
yourself) the essentials of elementary probability theory and combinatorics. You should be familiar with
n-choose-k problems and their ilk.

Graphs: Consider if a problem can be applied with graph algorithms like distance, search, connectivity,
cycle-detection, etc. There are three basic ways to represent a graph in memory (objects and pointers,
matrix, and adjacency list) — familiarize yourself with each representation and its pros and cons. You should
know the basic graph traversal algorithms, breadth-first search and depth-first search. Know their
computational complexity, their tradeoffs and how to implement them in real code.

Recursion: ​Many coding problems involve thinking recursively and potentially coding a recursive solution.
Use recursion to find more elegant solutions to problems that can be solved iteratively.

google.com/​careers

Front End and Mobile Technical Prep

Web Front End: ​You should be ready to cover topics like front end latency and implementation of standard
CS algorithms using idiomatic JavaScript. You should be able to articulate Javascript strengths and
shortcomings and ready to cover any of the following:

● Web security issues (XSS, XSRF)
● Prototypal inheritance
● DOM API & manipulation
● CSS manipulation

● Browser / DOM events & event handling
● XHR requests & HTTP headers
● JavaScript closures

Native: ​Be ready to cover implementation of standard CS algorithms using idiomatic mobile Java, ObjC or
Swift, and have awareness of chosen language strengths and shortcomings.

● How to split tasks in a UI-friendly way (e.g. threading/GCD, not stopping the UI thread, etc.)
● Structuring APKs for a large application, managing permissions (Android)
● Building offline functionality (Android)
● Leveraging Intents and Intent Filters (Android)

iOS: Focus on translating ideas to code. You should demonstrate an ability to grasp some basic data
structures available in Foundation (NSArray, NSDictionary, NSSet) and block usage (no, you don't have the
memorize the block syntax!). Show ability to write code to do client/server interactions and understand
limitations and system behaviors. Understand key language features like memory management model,
object-oriented features, protocols, delegates, categories, Grand Central Dispatch and performance.
Demonstrate ability to create screens in UIKit, understanding of View Controller concepts, UIView structure
and best practices. Understand how to create a view controller and layout subviews.

Front End/Mobile Design Interview: ​Design questions are used to assess a candidate's ability to combine
knowledge, theory, experience and judgement toward solving a real-world engineering problem. Sample
topics include Web App, Mobile App and API design (where the front-end and the back-end meet).

Resources
Books
Cracking the Coding Interview
Gayle Laakmann McDowell
Programming Interviews Exposed: Secrets to Landing Your Next Job
John Mongan, Eric Giguere, Noah Suojanen, Noah Kindler

Programming Pearls
Jon Bentley

Introduction to Algorithms
Thomas Cormen, Charles Leiserson, Ronald Rivest, Clifford Stein

Interview Prep
How we hire
Interviewing @ Google
Candidate Coaching Session:Tech Interviewing
CodeJam: Practice & Learn
Technical Development Guide

About Google
Company - Google
The Google story
Life @ Google
Google Developers
Open Source Projects
Github: Google Style Guide

Google Publications
The Google File System
Bigtable
MapReduce
Google Spanner
Google Chubby

google.com/​careers

https://books.google.ie/books?id=nlgWywAACAAJ&dq=Cracking+the+Coding+Interview&hl=en&sa=X&ei=hUTtUfXVCoSg4gS5v4C4BQ
https://books.google.com/books/about/Programming_Interviews_Exposed.html?id=9_by-rpCSSUC&hl=en
https://books.google.com/books/about/Programming_Pearls_2_E.html?id=vyhrriC6qcEC&hl=en
https://books.google.com/books/about/Introduction_to_Algorithms.html?id=VK9hPgAACAAJ&hl=en
http://www.google.com/about/careers/lifeatgoogle/hiringprocess/
http://www.google.com/about/careers/lifeatgoogle/interviewinggoogle.html
https://www.youtube.com/watch?v=oWbUtlUhwa8
https://code.google.com/codejam/contests.html
https://www.google.com/about/careers/students/guide-to-technical-development.html
http://www.google.com/about/company/
https://www.youtube.com/watch?v=WLttC-hKwMA&feature=youtu.be
https://www.youtube.com/user/lifeatgoogle
https://developers.google.com/
https://developers.google.com/open-source/projects
https://github.com/google/styleguide
http://research.google.com/archive/gfs.html
http://research.google.com/archive/bigtable.html
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/spanner.html
http://research.google.com/archive/chubby.html

